
DUNSMUIR MIDDLE SCHOOL Math 8 - Project Based Learning Geodesic Dome 2013-2014

STUDENT NAME:

DMS Math 8 – Miss Harvey's GEODESIC DOME PROJECT 2013-2014

Project: Build a Geodesic Dome

Rules:

- can be any material
- needs to fit in the classroom (or a picture and signed authentication
- can work w/ up to 1 partner
 - i. project needs to be twice as involved/detailed/work

Due: February 27, 2014

	1			
	Exemplary 4	Proficient 3	Developing 2	beginning 1
Design Creativity	Design is Masterful;	Design is <i>Skillfull</i> ;	Design is Competent;	Someone else's design;
	flexible, and efficient; able	Competent in using	Basic design with a bit	internet printout; Can
	to use knowledge and skill	knowledge & skill;	of a personal twist	perform only with
	and adjust understandings	demonstrates adapting	(gumdrops); Able to	coaching or relies on
	well in novel, or difficult	understandings to your	perform well with	highly scripted,
	design idea	own design ideas	knowledge and skill in	singular "plug-in"
			a few key situations;	skills, procedures or
			flexibility, adaptability,	approaches
			or range to new	
			situations may be	
			limited	
Form & Function	Final product stands	Final product generally	Final product basically	Final product almost
	independently & is	stands independently &	stands & is somewhat	stands & is not quite
	extremely sturdy; goes	is sturdy	sturdy; may contain a	sturdy; some
	well beyond basic design		few errors	significant errors are
	elements			present
Math Calculations	Demonstrates knowledge	Demonstrates knowledge	Demonstrates	Demonstrates
	& skills at	& skills at	knowledge & skills at	knowledge & skills at
	85% correct?	75% correct	65% correct	50% correct
Math Workbook	An uncommon and	a workbook that reflects	A complete workbook	A sketchy or brief
	revealing workbook, going	some in-depth and	but with limited ideas;	workbook; more
	beyond what is obvious or	personalized ideas: the	rarely extends beyond	copying from the text
	what was discussed in	student is making the	hasic ideas of what	than analytical or
	Wilde Was discussed in	woult big /box ours going	was loans of workhook	creative contains
	class; makes refined	work his/ner own, going	was learned; workbook	creative; contains
	connections; well	beyond what is directly	is general and contains	short disconnected
	supported by	stated in the class—there	basic mathematical	sections of
	mathematical work;	are some supported	work	mathematical work
	unique thinking displayed	ideas here, but it is		
		missing some		
		mathematical work		

Geodesic Dome Project

Table of Contents

Student Name		Mark /5
Workbook	7.3 Perimetre	
	7.4 Perimeters of Polygons	
	7.5 Circumference of a Circle	
	7.6 Area of a Rectangle and a Square	
	7.7 Area of a Parallelogram	
	7.8 Area of a Triangle	
	7.9 Area of a Circle	
	8.1 Three-Dimensional Solids	
	8.2 Surface Area of Polyhedra	
	8.3 Volumes of Prisms	
	8.4 Surface Area and Volume of a Cylinder	
	9.5 Polygons	
	9.7 Solids, Shells and Skeletons	
	9.8 Nets of Three-Dimensional Shapes	
Project	Design Creativity	
	Form & Function	
	Math Calculation – Surface Area	
	Workbook	

- **1.** *Add.*
- a) 3.6
 - 4.5 8.9
- b) 6.4 5.8

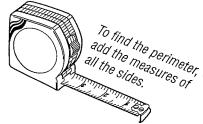
10.7

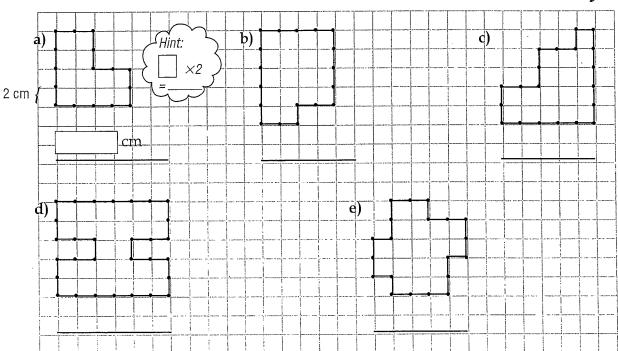
- c) 14.3 16.9 12.0
- 1.9 d)
 - 1.8 2.7
 - 3.8
- 7.4
 - 6.4 1.0 10.7

4.6

- NO CALCULATOR
 - 2. *Match* each question with the correct answer.

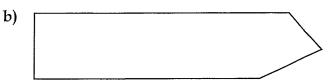
- a) $6 \times 3 \times 10$ b) $7 \times 2 \times 10$
- c) $3 \times 3 \times 3$
- d) $5 \times 4 \times 4$
- e) $2 \times 2 \times 6$
- f) $10 \times 9 \times 1$
- g) $4 \times 2 \times 2$
- h) $5 \times 5 \times 1$
- i) $2 \times 4 \times 6$
- j) $10 \times 10 \times 10$


- 27
- 80
- 25
 - 180
- 90
- 48
- 140
- 16
- 1000
- 24

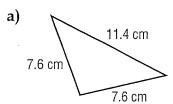


7.3 Perimeter

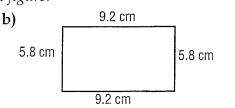
Practice

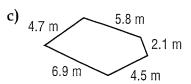

1. Find the perimeter of each figure. The distance between two points on the grid is 2 cm.

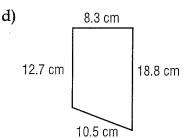
2. Estimate the perimeter of each figure. Measure each side of the figure. Calculate the perimeter of each figure.


Est.

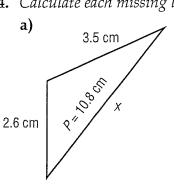
Est. "

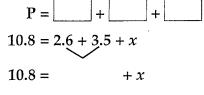


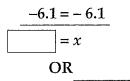

3. Estimate, then calculate the perimeter of each figure.



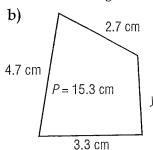
$$P = 7.6 + 11.4 + 7.6$$

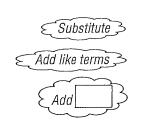


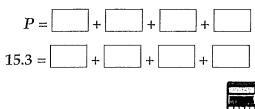



Problems and Applications

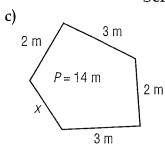
4. Calculate each missing length.


Add -6.1.

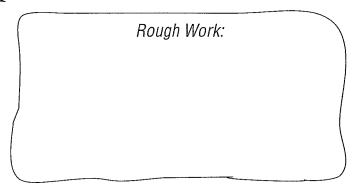




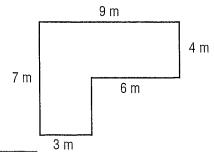
The missing side is _____ cm.


Find the missing side.

Sentence: _


Sentence: _

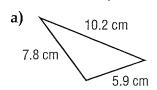
5. Complete the table.



$$P = a + b + c$$

		_	U
а	b	C	P
a) 1.5	1.3	1.2	
b) 2.1	1.6	2.5	
c) 4		5	14
d)	4	5	13

- 6. A wallpaper border will be put around the top of the walls of a hallway.
 - a) What length of border will be needed?


Sentence: __

b) The border is sold in 6 m rolls. How many rolls will be needed?

Hint: Divide

Sentence: __

1. Calculate each perimeter.

8.2 cm b) 3.5 cm 3.5 cm 12.3 cm

P = sum of all sides

2. Subtract.

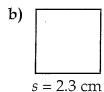
- 165 a) -99
- **b)** 342
- 602 c) -99
- d) 111 -99
- 276 e) -99

- NO CALCULATOR
- f) 545 -99
- g) 215 -99
- 485 h) -99
- 198 -99
- 100

7.4 Perimeters of Polygons

Practice

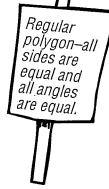
1. Find the perimeter of each regular polygon.



 $P = \text{number of sides} \times \text{length of a side}$

$$P = 3 \times 4.5$$

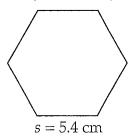
$$P = \underline{\qquad}$$
 cm



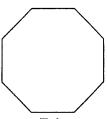
$$P = 4 \times s$$

$$P = 4 \times$$

c) s = 1.8 cm

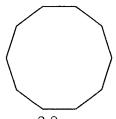

$$P = \bigsqcup \times s$$

$$P = \square \times \bigcirc$$

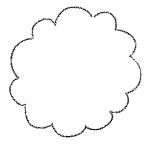

$$P = \underline{\hspace{1cm}} cm$$

Find the *perimeter* of each regular polygon.

d)

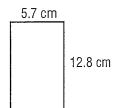


e)

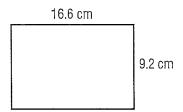



$$s = 7.6 \text{ cm}$$

f)


$$s = 3.9 \text{ cm}$$

2. Calculate the *perimeter* of each rectangle.

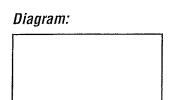


$$P = 2 \times l + 2 \times w$$
$$= 2 \times 5.7 + 2 \times 12.8$$

b)

$$P = 2 \times l + 2 \times w$$

c)



Problems and Applications

3. To warm up before a practice, the soccer coach has the team members run around the field 2 times. The length of the field is 100 m and the width is 73 m. How far does each team member run?

Find	the	nerimeter	of each	regula	rnolug	on.

a) square, each side is 8.3 m

Draw the figure first.

$$P = 4 \times s$$

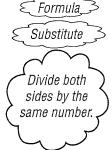
b) triangle, each side is 7.4 cm

c) hexagon, each side is 9.4 cm

£ .	Diagram 🗦	
	Marie	
Hint:	\mathcal{I}	
Hexagon	<	

- d) octagon, each side is 5.2 cm

	۔۔	4	
$\langle \bar{}$	ת	iagram	- 2
<	ט	iagrain	5


- 5. Find the length of the side of each regular polygon.
 - a) triangle, perimeter is 21 cm
- b) square, perimeter is 24 m

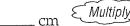
$$P = 3 \times s$$

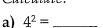
$$21 = 3 \times s$$

$$21 = 3 \times s$$

- 1. Calculate the perimeter of each regular polygon.
 - a) octagon, sides 4.1 cm

b) pentagon, sides 4 cm




P = cm $\frac{Multiply}{}$

- c) square, sides 3.9 cm
- d) triangle, sides 7.7 cm

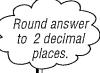
b)
$$7^2 =$$

f)
$$10^2 =$$

e)
$$9^2 =$$
 ____ f) $10^2 =$ ___ g) $1^2 =$ ___ h) $3^2 =$ ____

LEARNING TOGETHER Investigating Geometric Constants

Work together with your classmates, using your $MATHPOWER^{TM}$ student text, pages 214 and 215.


Skill Builder

1. Multiply. Round each answer to the nearest hundredth (2 decimal places).

- a) 6.87 \times 4.5
- 3.14 b) $\times 7.4$
- 4.08 $\times 2.9$
- d) 14.21 \times 9.6

NO CALCULATOR

2. Add.

- a) 5000 <u> + 4500</u>
- **b**) 600 + 700
- 8000 c) + 430
- d) 7000 +2100

NO CALCULATOR

- e) 400 +3000
- 1000 +2200
- 900 g) +4000
- h) 6000 +2000

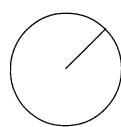
7.5 Circumference of a Circle

≐ 3.14

Diameter is double the radius.

Round each answer to the nearest hundredth (2 decimal places), if necessary.

Practice


1. Measure each radius or diameter and calculate the circumference of each circle.

$$d = \underline{\qquad}$$

$$C = \times d$$

Formula Substitute Multiply

2. Estimate, then calculate the circumference of each circle.

a)
$$d = 8.35 \text{ cm}$$

Formula 3

Substitute

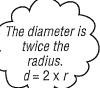
Multiply

$$C = \times \underline{\hspace{1cm}}$$

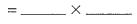
Est.
$$C = 3 \times 8$$

b)
$$d = 15 \text{ cm}$$

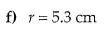
____ cm


c) d = 19.2 cm

d) d = 5.6 m

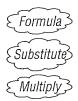


e) r = 23 cm

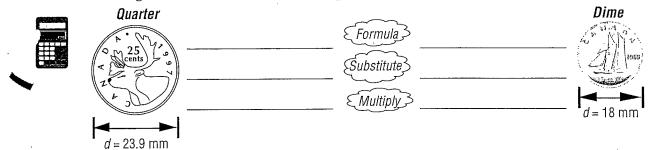


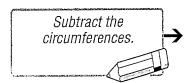
 $d = 2 \times$

$$C = \times d$$

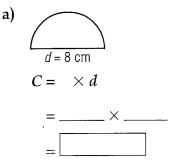


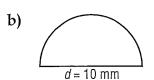
Problems and Applications


3. The diameter of the clock face of Big Ben in London, England, is 7.1 m. What is the circumference of the clock face?



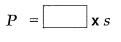
Sentence: __


4. How much longer is the circumference of a quarter than the circumference of a dime?



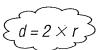
Sentence:

5. Calculate the perimeter of each figure.



 $\frac{1}{2} \text{ of the circumference} = \frac{C}{2}$ $= \frac{C}{2}$

To find the	perimeter of \subset	<u></u>
Add: →	$d + \frac{1}{2} \text{ of } C$ $= \boxed{ + }$	

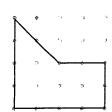

1. Calculate the perimeter of each figure.

E Formula 3

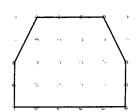
b)

- 2. Calculate the perimeter of each circle.
 - a) diameter of 2.5 cm
- $\mathcal{E}\vec{C} = \times d\mathcal{E}$
- b) radius of 4 cm

LEARNING TOGETHER Area



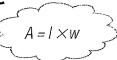
Work together with your classmates, using your MATHPOWERTM student text, pages 218 and 219. MATHPOWERTM **Pages** 218 to 219


Skill Builder

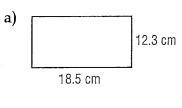
1. What is the area of each figure in square units?

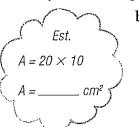
a)

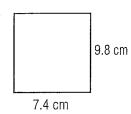
b)

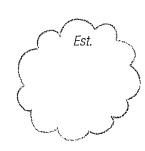

2. *Match* each question in Column A with the correct answer in Column B. Connect with lines.

_ square units

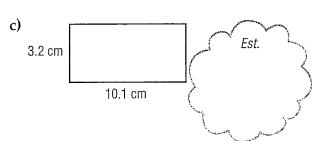

theet certifications.	
Column A	Column B
0.3×0.5	0.18
0.8×0.6	0.3
0.1×8	0.15
0.2×0.9	0.12
0.7×0.6	0.08
0.2×0.3	0.48
0.6×0.5	0.8
0.2×0.4	0.42
0.7×0.3	0.06
0.4×0.3	0.21

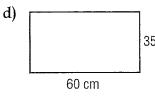

7.6 Area of a Rectangle and Square

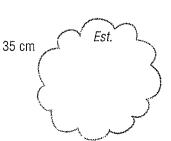

Practice



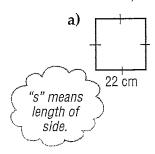
1. Estimate, then calculate the area of each rectangle.

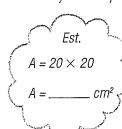


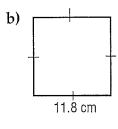



$$A = l \times w$$
$$= 18.5 \times \boxed{ }$$

E Formula 3


$$=$$
 ____ cm²





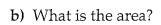
2. *Estimate*, then calculate the area of each square.

Calculate the area of each square.

Est.

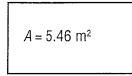
Problems and Applications

3. The Imperial Palace in Beijing, China, is 960 m long and 750 m wide. What is the area of the palace?



Sentence: _

- 4. The perimeter of a square play area is 36 m.
 - a) What is the length of each side?

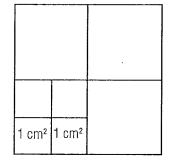

$$P = 4s$$

$$36 = 4s$$

$$36 = 4s$$

$$s =$$

- Sentence: _
- 5. The area of a rectangular pathway is 5.46 m². The width is 7.8 m. How long is the pathway?


Substitute 3

314 Chapter 7

The area of each of the smallest squares is $1\ cm^2$.

a) Calculate the area of each of the other squares.

b) The area of the largest square is ______.

Skill Builder

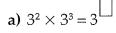
- 1. Calculate the area of each rectangle.
 - a) length is 2 cm width is 8 cm

E Formula 3

 $A = l \times w$

Substitute 3

Multiply 3


c) length is 25.6 cm width is 8.4 cm

d) length is 3.8 cm width is 2.5 cm

b) length is 8 cm

width is 7 cm

2. Simplify. Leave your answer in exponential form.

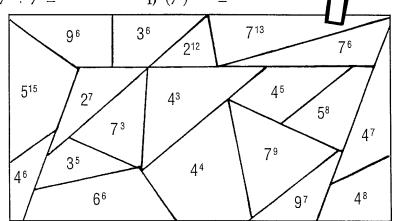
b)
$$4^6 \div 4^2 =$$

c)
$$2^4 \times 2^3 =$$

d)
$$(6^3)^2 =$$

e)
$$9^6 \times 9 =$$

f)
$$4^6 \div 4 =$$

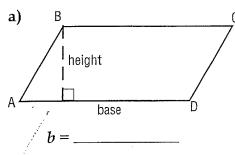

g)
$$5^3 \times 5^5 =$$

i) $4^5 \div 4^2 =$

h)
$$7^8 \div 7^5 =$$

i)
$$(7^3)^3 =$$

In the diagram at the right, colour in the spaces that have the above answers. What shape appears?


Remember:1. 3⁴ × 3²= 3⁴⁺²

7.7 Area of a Parallelogram

Practice

1. Measure the base and the height of each parallelogram. Then, calculate the area.

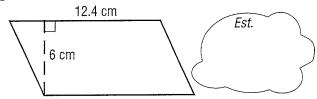
) A _____B

h = _____

b = _____

$$A = b \times h$$
$$= \underline{\qquad} \times \underline{\qquad}$$

Formula 3


Substitute 3

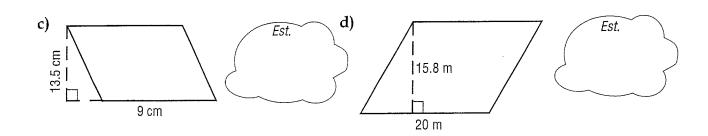
=

E Multiply 3

2. Estimate, then calculate the area of each parallelogram.

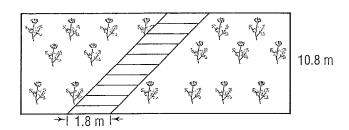
 $A = b \times h$ $= 6.5 \times 5.9$

Substitute 3


= 12.4 × _____

A = ____×____

=____

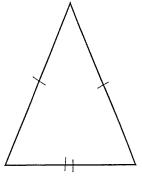

Multiply_>

=

Problems and Applications

3. The path cuts through a rose garden. What is the area of the path?

Sentence: _____


Skill Builder

- **1.** Draw each of the following.
 - a) a right angle
- b) an acute angle

 less than 90°
- c) a reflex angle

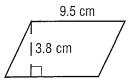
 more than 180° but
 less than 360°

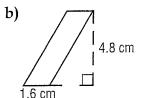
2. Draw the line of symmetry.

Draw a line that cuts the figure exactly in half.

- **3.** Continue each pattern for 2 more numbers.
 - a) 1, 2, 3, _____.
- b) 4, 7, 10, _____.
- c) 4, 8, 16, ______.
- d) 1, 3, 9, _____.
- e) 48, 24, 12, _____.
- f) 100, 200, 400, _____, ___.
- g) 33, 30, 27, _____, ___.
- h) 10 000, 1000, 100, _____, ___.

LEARNING TOGETHER Seven-Point Geometry

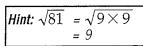

Work together with your classmates, using your MATHPOWER™ student text, pages 224 and 225.


Skill Builder

1. Calculate the area of each parallelogram.

a)

 $A = b \times h$



E Formula 3

< Multiply >

2. Calculate.

a)
$$\sqrt{49} =$$

b)
$$\sqrt{16} =$$

c)
$$\sqrt{100} =$$

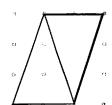
a)
$$\sqrt{49} =$$
 ____ b) $\sqrt{16} =$ ___ c) $\sqrt{100} =$ ___ d) $\sqrt{25} =$ ____

e)
$$\sqrt{64} =$$

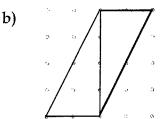
f)
$$\sqrt{900} =$$

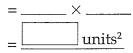

g)
$$\sqrt{9} =$$

e)
$$\sqrt{64} =$$
 _____ f) $\sqrt{900} =$ ____ g) $\sqrt{9} =$ ____ h) $\sqrt{400} =$ ____


7.8 Area of a Triangle

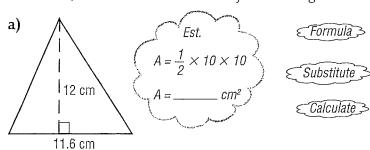
Practice


1. Find the area of each parallelogram and of each shaded triangle.

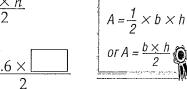

a)

Area of parallelogram= $b \times h$

Area of parallelogram = _____

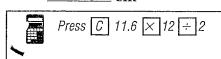


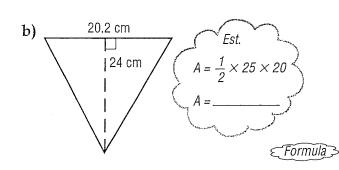
= ____ × ____

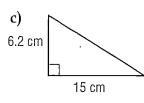

Area of triangle = $\frac{1}{2}$ × area of parallelogram Area of triangle = $\frac{1}{2}$ × area of parallelogram $=\frac{1}{2}\times$ _____

 $=\frac{1}{2}\times$ _____

2. Estimate, then calculate the area of each triangle.

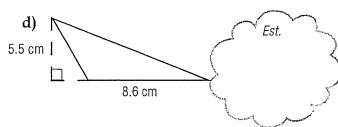


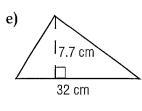




Remember:

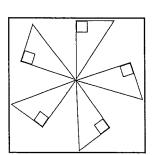
 $= \underline{\qquad} cm^2$





Substitute 3

Calculate >



Problems and Applications

- 3. This section of a patchwork quilt has 5 triangles on it. The base of each triangle is 5.3 cm and the height is 3.6 cm.
 - a) What area of fabric is needed for 1 triangle?

b) What area of fabric is needed for 5 triangles?

- 1. Calculate the area of each parallelogram.
 - a) h = 4.5 cm, b = 3.8 cm

b) h = 7 cm, b = 6 cm

- $A = b \times h$

 - = ____ × ____
- Substitute 3

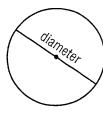
Formula 3

- = ____ cm²
- < Multiply 3
- 2. Calculate the circumference of each circle.
 - a) d = 3 cm

b) r = 6 m

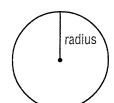
$$C = \times d$$

- 3. Tell whether each number is prime (P) or composite (C).


 - a) 5 _____ b) 17 ____
- c) 40 _____

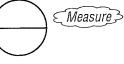
- d) 16 _____
- e) 45 _____
- f) 25 _____
- A prime number is one that is divisible only by itself and 1; e.g., 3 is prime.

Remember:

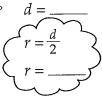

- g) 2_____
- h) 11 _____
- i) 51 _____

7.9 Area of a Circle

Remember: The radius is half the diameter.

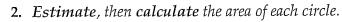

Practice

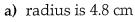
Round each answer to the nearest hundredth (2 decimal places).

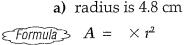

1. Using a straight edge, measure the radius or diameter of each circle. and the color of the Then, calculate each area.

b)

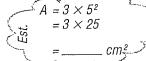
≐ 3.14

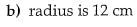

 $=3.14\times_{---^2}$

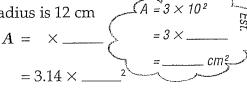

 $= 3.14 \times$


Formula 3

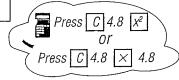
Square 3


Substitute 3



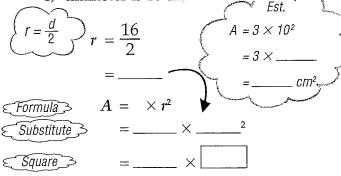


 $= 3.14 \times 4.8^{2}$



$$Square$$
 = 3.14 × 4.8 × $Multiply$ =

Substitute 3


c) radius is 3.6 m

d) radius is 21 cm

f) diameter is 1.2 m

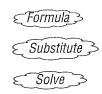
Problems and Applications

3. A radio station sends out sound waves approximately 80 km in all directions from the station. What is the area of the transmission circle covered by the sound waves?

Diagram:

Multiply >

Hint:
$$r = 80 \text{ km}$$



4. The world's largest clock face is on a floral clock in Toi, Japan. The clock face has a radius of 15.5 m. Calculate the area.

Diagram:

S	en	ter	ice:
$\boldsymbol{\mathcal{O}}$	CIL	LCI	ICE.

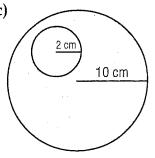
5. Calculate the area of each shaded region.

a)

First: Find the area of the whole circle.

$$A = \times r^2$$

$$= \underline{\qquad} \times \underline{\qquad}$$


First: Find the area of the whole circle.

Second: To find the area of half of a circle, divide the area of the whole circle by 2.

Second: Divide the area by 4.

Area of	=	$\frac{A}{2}$	
	=	2	

c)

First: Find the area of the large circle.

Second: Find the area of the small circle.

Third: Subtract.

Shaded area = Area of large circle — Area of small circle

Logic

sappes

What is the mystery number? To find the answer, use the following clues.

- a) It is less than 50, but greater than 30.
- b) It can be divided by 5.
- c) It can be divided by 7.

The number is _____.

Skill Builder

1. First: Draw and label a diagram of each figure.

Second: Calculate the area of each figure.

Formulas: $A = l \times w$ $A = b \times h$ $A = s^2$ $A = \frac{1}{2} \times b \times h$ $A = \times r^2$

- a) rectangle with l = 8 cm, w = 2 cm
- b) a square with s = 6 cm

E Diagram 3

Substitute 3

€ Calculate >

- c) parallelogram with b = 2.1 cm, h = 4.6 cm
- d) triangle with b = 9 cm, h = 7 cm
- e) circle with r = 5 cm

2. Find the missing factor.

a)
$$7 \times$$
 = 63

c)
$$\times 6 = 30$$

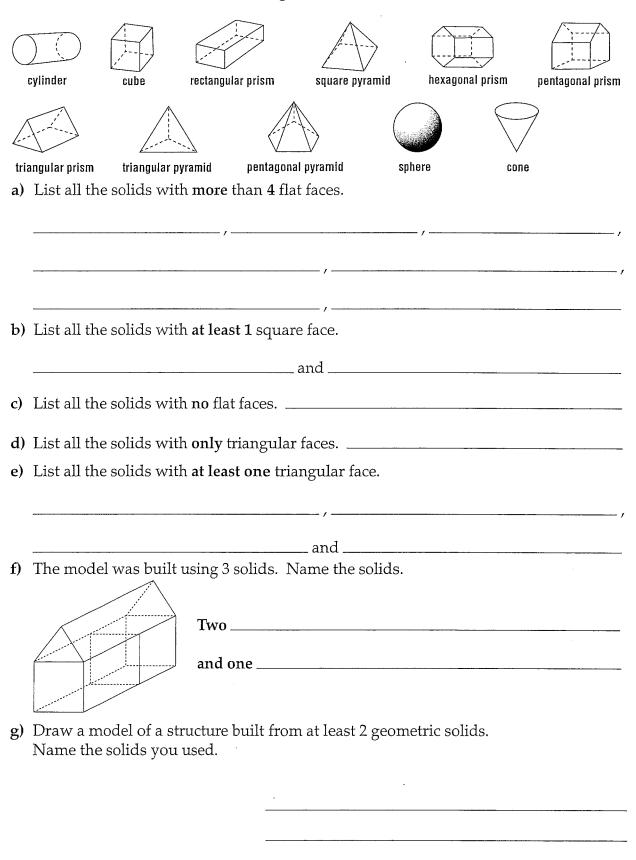
d)
$$10 \times \boxed{} = 40$$

e)
$$\times 10 = 90$$

f)
$$\times 8 = 48$$

g)
$$\times 11 = 66$$

h)
$$\times$$
 9 = 54


i)
$$\times 6 = 18$$

			•

8.1 Three-Dimensional Solids

Practice

1. Use the solids shown below to answer a - g.

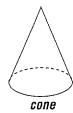
Problems and Applications

2. Name the geometric shape suggested by each object.

b.

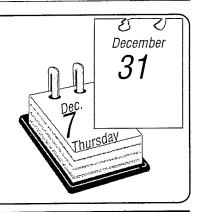
e.

3. Describe how a prism is named. See diagrams on p. 351, #1.

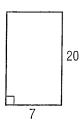

4. Describe how a pyramid is named.

See diagrams on p. 351, #1

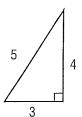

5. a) How are a pyramid and a cone alike?


pyramid

b) How are a pyramid and a cone different?



If December 7 falls on a Thursday, on which day of the week will December 31 fall?


1. Calculate the area.

$$A = l \times w$$

$$A = \frac{1}{2} \times b \times h$$

2. Write each fraction as a decimal.

a)
$$\frac{4}{5} = \frac{\boxed{10}}{}$$

b)
$$\frac{7}{10} =$$

c)
$$\frac{3}{4} = \frac{100}{100}$$

d)
$$\frac{1}{5}$$

e)
$$\frac{9}{10}$$

f)
$$\frac{1}{2}$$

g)
$$\frac{1}{100}$$

h)
$$\frac{3}{50}$$

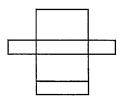
i)
$$\frac{12}{100}$$

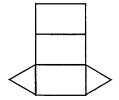
8.2 Surface Areas of Polyhedra

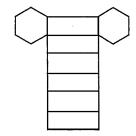
Practice

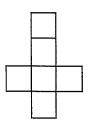
1. Match each net with its polygon.

triangular prism

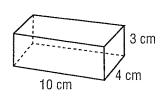

cube

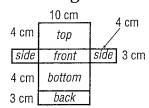



rectangular prism

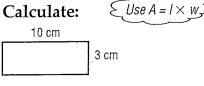


hexagonal prism





2. Draw the net. Then, calculate the surface area of each polyhedron.


a)

Drawing:

Calculate:

10 cm

Top and bottom

Front and back

Front: $A = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$ Top: $A = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$ Side: $A = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$

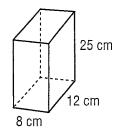
Sides

= _____ cm²

Front and back:

 $2 \times \underline{\qquad} cm^2 = \underline{\qquad}$

4 cm

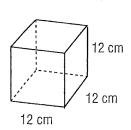

Top and bottom: $2 \times _{----} cm^2 = _{-----}$

Two sides:

 $2 \times _{---} cm^2 = _{--}$

Total Surface Area =_

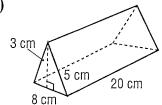
b)


Drawing:

Calculate:

Draw the net. Then, calculate the surface area of each polyhedron.

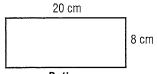
c)



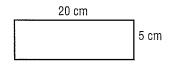
Drawing:

Calculate:

d)



Drawing:


Calculate:

Two ends

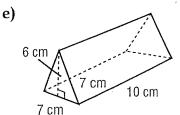
Bottom

Two sides

End: $A = \frac{1}{2} \times b \times h$

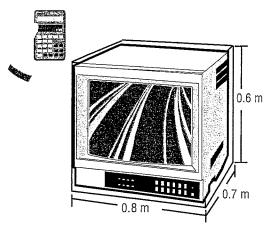
$$= \frac{1}{2} \times 3 \times 8$$

Bottom:
$$A = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$$
 Side: $A = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$


= ____ cm²

Two ends: $2 \times _{----} cm^2 = _{-----}$

Two sides:
$$2 \times _{\text{-----}} \text{cm}^2 = _{\text{------}}$$


Total Surface Area = _

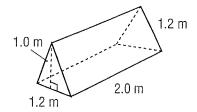
Draw the net. Then, calculate the **surface area** of each polyhedron.

Problems and Applications

3. a) The Chan's television is delivered in a cardboard box. Calculate the least amount of cardboard needed to make the box.

Top and Bottom:

Front and back:


Two sides:

Fr	nt and back:
To	and Bottom:
Tv	o sides:
· · ·	Total Surface Area =

Sentence:

b) What assumptions have you made?_____

4. This small tent has an attached ground sheet. What is the least amount of material that would be needed to make this tent?

Sentence: __

5. A highrise office tower is 165 m tall, 85 m long, and 22 m wide. What is the **total surface** area of the sides and roof of the tower?

Do not include the floor.

Sentence: _

Make each of the following sentences true. Use the numbers 2, 3, and 6 only once in each problem.

1.
$$\left(\right) - \left(\right) + \left(\right) = 7$$

2.
$$\bigcirc \times \bigcirc - \bigcirc = 0$$

3.
$$\times$$
 + = 20

$$4. \bigcirc \div \bigcirc + \bigcirc = 4$$

- 1. Find the area of each rectangle.
 - a) l = 11 cm, w = 10 cm

b) l = 3 m, w = 1.9 m

- 2. Calculate.
 - a) 50% of 50 $= 0.5 \times 50$

b) 10% of 70

c) 20% of 70

- **d)** 60% of 300
- e) 100% of 76
- **f)** 30% of 60

3. There is one mistake in the box below. Shade it.

X	3	5	7	9
4	12	20	28	36
6	18	30	49	54
8	24	40	56	72
2	6	10	14	18

What should the number be?

LEARNING TOGETHER Estimating and Measuring Volume

Work together with your classmates, using your $MATHPOWER^{TM}$ student text, pages 250 and 251.

MATHPOWER™ Pages 250 to 251

Skill Builder

- **1.** Calculate the area.
 - a) a square with side 5 cm
- b) a rectangle with length 8 m and width 4 m

Formulas: $A = I \times W$ $A = \frac{1}{2} \times b \times h$

Continues on next page. >

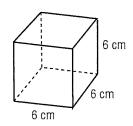
Calculate the area.

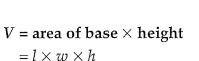
- c) a triangle with base 6 cm and height 3 cm
- d) a rectangle with length 9 m and width 1 m

2. Complete each table.

Decimal	Percent
a) 0.3	
b) 0.45	45%
c) 0.04	
d) 0.5	
e) 0.01	

7.5 cm

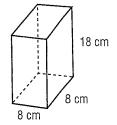

Decimal	Percent
f) 3.61	361%
g) 1.25	
h) 1	
i) 1.01	
j) 2	


8.3 Volumes of Prisms

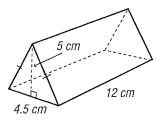
Practice

1. Calculate the volume of each prism.

a)

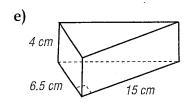


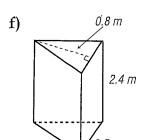
b)


5.2 cm

16 cm

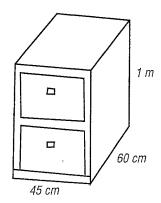
Calculate the volume of each prism.


d)



 $V = \text{area of base} \times \text{height}$

$$V = \frac{b \times h}{2} \times \text{height}$$
$$= \frac{1}{2} \times 5 \times 4.5 \times 12$$


$$V =$$
 cm³

Problems and Applications

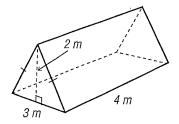
2. Calculate the volume of the filing cabinet, in cubic metres.

3. a) How many rectangular prisms can you make with 12 unit cubes in each one?

}

→ Use unit cubes

or cube-a-links


to build each one.

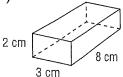
Draw each prism.

- b) What is the volume of each prism? __
- 4. A tent is 4 m long, 3 m wide, and 2 m high.
 - a) What is the volume of the tent?

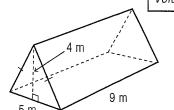
Volume = Area of base \times height

b) How many campers could sleep in this tent?

Explain how you would arrange them to sleep.

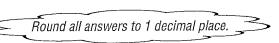

Skill Builder

1. Draw the net and calculate the surface area of the cube.

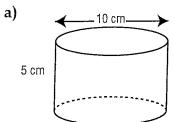


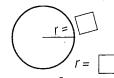
2. Calculate the volume of each prism.

a)

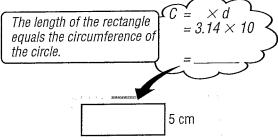

b)

Volume = Area of base \times height


8.4 Surface Area and Volume of a Cylinder


Practice

1. Calculate the surface area of each cylinder.

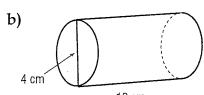


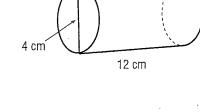
One end: Hint: $A = \times r^2$

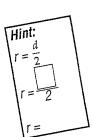
$$A = \times r^{2}$$

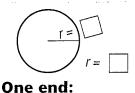
$$= 3.14 \times 5 \times 5$$

$$= \underline{\qquad}$$

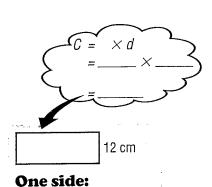



One side: $A = l \times w$


Two ends: $2 \times _{----} cm^2 = _{-----}$

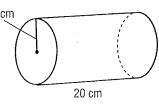

 $1 \times \underline{\hspace{1cm}} cm^2 = \underline{\hspace{1cm}}$ One side:

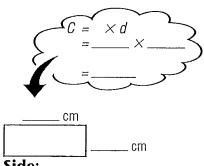
Total Surface Area = _____



 $A = \times r^2$ = _____ cm²

 $A = l \times w$ = _____ × ____ . = _____ cm²


Two ends: $2 \times _{----} cm^2 = _{-----}$


 $1 \times$ ____ cm²=_____ One side:

Total Surface Area = _____

Calculate the surface area of each cylinder.

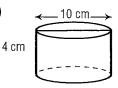
Ends:

Side:

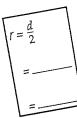
Two ends:

$$2 \times \underline{\hspace{1cm}} cm^2 = \underline{\hspace{1cm}}$$

One side:


$$1 \times \underline{\qquad} cm^2 = \underline{\qquad}$$

Total Surface Area = .



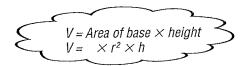
2. Find the volume of each cylinder.

$$V = Area of base \times height$$

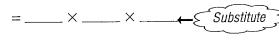
$$V = \times r^2 \times h$$

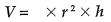
$$V = \times r^2 \times h$$

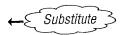
$$=$$
 \times $5^2 \times 4$



$$=$$
 $___\times5\times5\times4$


Find the volume of each cylinder.



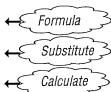

$$V = \times r^2 \times h$$

12 cm

20 cm

Problems and Applications

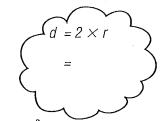
3. a) The glue stick container has a radius of 1.5 cm and a height of 10.5 cm. What is the **volume** of the container?

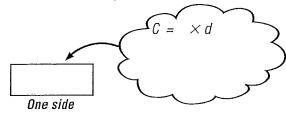

$$V = \times r^2 \times h$$

Sentence:

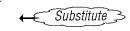
b) The glue inside the glue stick container has a radius of 1.3 cm and a height of 9 cm. What is the volume of the glue?

c) What is the difference between the volume of the container and the volume of the glue?


4. The Durams have a water heater with a radius of 30 cm and a height of 120 cm.


a) What is the surface area of the water heater?

One end: A =


Side: $A = l \times w$

Sentence: ___

b) What is the **volume** of the water heater?

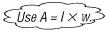
$$V = \times r^2 \times h$$

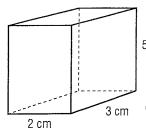
P	atte	rn
	75	3
	55_	J
Ź	app	er

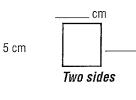
1. Describe the following pattern in words.

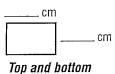
$$99 \times 2 = 198$$

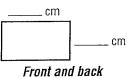
$$99 \times 3 = 297$$


$$99 \times 4 = 396$$


$$99 \times 5 = 495$$


2. Complete the last 2 lines without using a calculator.


Skill Builder

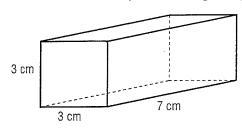

1. Find the surface area of the rectangular prism.

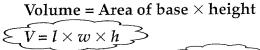
One side:

$$A = l \times w$$

$$A = l \times w$$

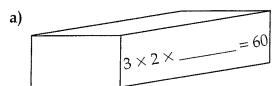
Front:

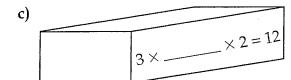

Two sides:

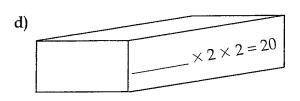

Top:

Front and back:

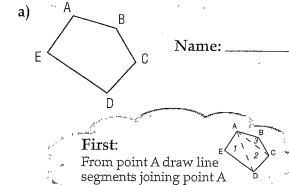
Total Surface Area =_


2. Find the volume of the rectangular prism.



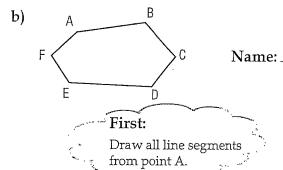

Substitute

3. Find the missing factor.



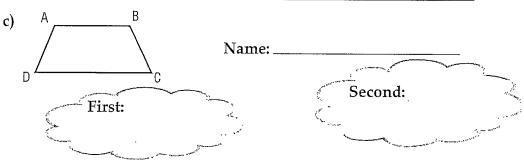
9.5 Polygons

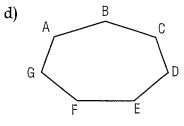
Practice


1. Name each shape and find the sum of the interior angles in each of the following.

pro	
Polygon	Sides
Triangle (△)	3
Quadrilateral ()	4
Pentagon (🔷)	5
Hexagon (△)	6
Heptagon (🔘)	7
Octagon	8 .
Nonagon :	9
Decagon	10
Dodecagon	12

Second: Multiply. $180^{\circ} \times \text{number of } \Delta \text{ s}$ = sum of interior angles. $180^{\circ} \times \boxed{}$

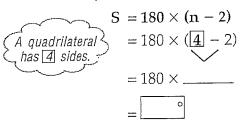

Sentence: *The sum of the interior angles is*


to all the points.

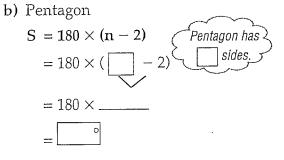
Second: $180^{\circ} \times \text{number of } \Delta \text{ s}$ = sum of interior angles. $180^{\circ} \times \square = \square$

Sentence:

Sentence: ____


Name:

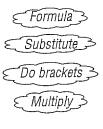
400 Chapter 9


2. Use the formula to find the sum of the interior angles of each of the following.

Sum of interior angles of a polygon: $S = 180^{\circ} \times (n-2)$

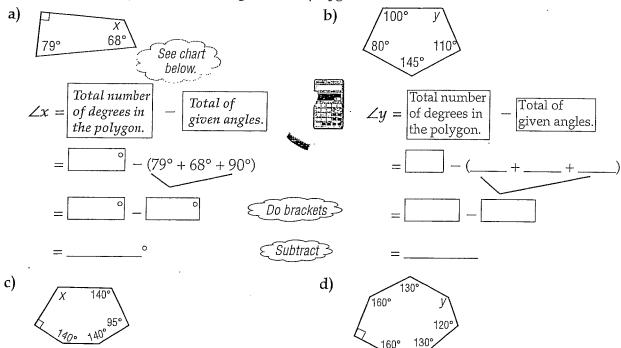
a) Quadrilateral

c) Hexagon


Formula >
Substitute >
Do brackets >
Multiply >

e) Octagon

- Formula >
 Substitute >
 Do brackets >
 Multiply >
- f) Nonagon

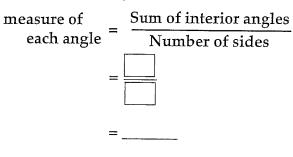

d) Heptagon

g) Decagon

Polygon	Sum of the Interior Angles	
Triangle		
Quadrilateral		
Pentagon		Complete
Hexagon	720°	the chart.
Heptagon		
Octagon		
Nonagon		
Decagon		

3. Find the measure of the unknown angle in each polygon.

4. Find the measure of each angle in the following.


Regular Polygon \rightarrow all the sides are the same length and all the angles have the same measure.

Polygon	Sum of the Interior Angles
Triangle	180°
Quadrilateral	360°
Pentagon	540°
Hexagon	720°
Heptagon	900°
Octagon	1080°
Nonagon	1260°
Decagon	1440°

a) regular triangle

measure of each angle =
$$\frac{\text{Sum of interior angles}}{\text{Number of sides}}$$
= $\frac{180^{\circ}}{\text{Divide}}$
= $\frac{\text{Divide}}{\text{Divide}}$

b) regular pentagon

c) regular hexagon

d) regular decagon

Problems and Applications

- 5. What is the common name for a regular quadrilateral?
- 6. How many lines of symmetry are there in
 - a) a regular hexagon?

b) a regular pentagon?

Skill Builder

1. Write each ratio 3 ways.

Example:

\$3 spent to \$10 saved \rightarrow 3 to 10, 3:10 or $\frac{3}{10}$

- a) \$1 spent to \$4 saved
- b) \$5 spent to \$7 saved
- c) \$6 spent to \$5 saved

2. Evaluate for t = -3.

BEDMAS

a) -5t $= -5 \times \boxed{-3}$

Substitute 3

b) -t + 3

e) -2t - 5

c) 4*t*

= _____

E Calculate 3

d) 6t + 2

Substitute

f) -t+3

=-1()+3

=

Multiply 3

= ____ + 3

=

Calculate 3

= ____

g) $2t^2$

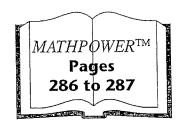
h) $t^2 + 4$

Substitute 3

Exponents3

Substitute

Exponents ?


Multiply 3

 $\{Add\}$

LEARNING TOGETHER The Golden Ratio

Work together with your classmates, using your $MATHPOWER^{TM}$ student text, pages 286 and 287.

