1.5

The Pythagorean Theorem

Quick Review

➤ A right triangle has two legs that form the right angle. The side opposite the right angle is called the hypotenuse.

The three sides of a right triangle form a relationship known as the Pythagorean Theorem.

Pythagorean Theorem: The area of the square on the hypotenuse is equal to the sum of the areas of the squares on the legs.

➤ In the diagram:

Area of square on hypotenuse:

 $10^2 \text{ cm}^2 = 100 \text{ cm}^2$

Areas of squares on legs:

$$6^2 \text{ cm}^2 + 8^2 \text{ cm}^2 = 36 \text{ cm}^2 + 64 \text{ cm}^2$$

 $= 100 \text{ cm}^2$

Notice that $10^2 = 6^2 + 8^2$.

This theorem is true for all right triangles.

You can use the Pythagorean Theorem to find the length of any side of a right triangle when you know the lengths of the other two sides.

To calculate the hypotenuse h, solve for h in this equation:

$$h^2 = 7^2 + 10^2$$

$$h^2 = 49 + 100$$

$$h^2 = 149$$

$$h = \sqrt{149}$$

Use a calculator: $h \doteq 12.2$

To calculate the leg with length l, solve for l in this equation:

$$12^2 = l^2 + 9^2$$

$$144 = l^2 + 81$$

$$144 - 81 = l^2 + 81 - 81$$

$$63 = l^2$$

$$\sqrt{63} = 1$$

Use a calculator: $l \doteq 7.9$ cm

1.5 The Pythagorean Theorum

→ any triangle where 1

of the 3 angles (&) is = 90°

→ All triangles have interior angles that
total 180° & A + B + C = 180°

hypoteneuse: the longest side of a right angle triangle

. Right Angle Indicator
4 touches the legs
4 points to the hypoteneuse

Ythapprean Theorum: + used to calculate the side lengths of a right angle triangle

Proof just for interest

$$a = 3$$
 $b = 4$
 $c = 5$
 $c^2 = 5.5 = 25$
 $c^2 + 6^2 = 25$
 $c^3 + 6 = 25$

Ex 1: Find the length of the hyporteneuse

4) \(\(\c^2 = C \)

 $\sqrt{32} = C$

$$a = 4$$

 $a = 4$
 $a = 4$

3)
$$Q^2 + b^2 = C^2$$

BE CAREFUL

 $16 + 16 = C^2$

YOU NEED C

 $32 = C^2$

NOT $C^2!!$

Must a take $\sqrt{C^2}$

to get $C!!$

or

 $C = \sqrt{32}$

Use a calculator
$$= 5.6$$

Ex2: Find the unknown Length to one decimal place. (B)

2)
$$Q = 5$$
 $C = 100$
 $Q^2 = 25$ $C^2 = 100$

Algebra

3) $Q^2 + b^2 = C^2$
 $25 + b^2 = 100$

Family

 $-\frac{7}{25} * b^2 = \frac{7}{25} * b^2 = \frac{$

$$A^{z}+B^{z}=C^{z}$$

$$C^{z}-A^{z}=B^{z}$$

$$C^{z}-B^{z}=A^{z}$$

4)
$$b^{2} = 75$$

 $\sqrt{b^{2}} = \sqrt{75}$ $b = 8.7$
 $b = 8.6602$